

2003 AFCEE Technology Transfer Workshop

Promoting Readiness through Environmental Stewardship

STRATEGIES USING VEGETABLE OIL FOR ENHANCED BIOREMEDIATION OF CHLORINATED SOLVENTS

Bruce M. Henry Parsons February 26, 2003

Acknowledgements

AFCEE Enhanced Bioremediation Initiative

- HQ AFCEE
 - Mr. James Gonzales
 - Mr. Jerry Hansen
 - Ms. Erica Becvar
- Mitretek
 - Mr. Patrick Haas

Introduction

- Many organic substrates have been used to stimulate reductive dechlorination of chlorinated solvents in groundwater
- Vegetable oil (VegOil) has been selected for study by the Air Force as a low-cost alternative substrate
- Strategies for using vegetable oils have been developed (revised protocol pending)
- The effectiveness and cost of two VegOil applications is presented for Site SS015 at Travis AFB, CA and the Hangar K Site at Cape Canaveral Air Station, FL

Vegetable Oil Injection for Enhanced Bioremediation

- Involves injection of food-grade vegetable oil which is only slightly soluble in groundwater (<1,000 mg/L)</p>
- Costs \$0.25 to \$0.50/pound delivered
- Allows a one-time injection scenario big benefit/cost savings
- Soybean oil is being tested by AFCEE at seven sites in CA (2), FL, OK, MO, OH, DE
- Additional tests are planned in 2003 in OK, HI, TX, and WA

Vegetable Oil Injection for Enhanced Bioremediation

Primary objective is to reduce source mass and/or prevent plume migration by stimulating reductive dechlorination of chlorinated solvents

Two strategies are commonly applied:

- Reduce or contain source mass in a known source area or a plume "hotspot" (grid configuration)
- Prevent plume migration through containment/interception (permeable biobarrier configuration)

Source Area Configuration

Source Area Configuration

- Sorbed mass is "stripped" from the aquifer matrix by the surfactant properties of the oil
- Contaminant mass partitions into the vegetable oil (sequestered/contained)
- Mass is destroyed by degradation processes
- Dissolution from DNAPL or sorbed mass is enhanced by increased concentration gradients
- Partitioned contaminant mass is released into the reaction zone as the oil degrades
- Relative permeability (i.e., hydraulic conductivity) may be intentionally lowered to reduce mass flux from the source area (containment)

Biobarrier Configuration

Biobarrier Configuration

- Biobarrier intercepts groundwater flow and contaminant mass flux
- Contaminant mass partitions into the vegetable oil (short term reduction in contaminant concentrations)
- Mass is destroyed by degradation processes (long term reduction in contaminant concentration and mass)
- But, maintaining hydraulic conductivity in the biobarrier is paramount (use of emulsions and lower residual oil saturations)
- Mobile micro-emulsions and lower residual saturations will reduce longevity of biobarrier

Substrate Distribution

- Design of oil-in-water emulsions with very fine droplet size to increase radius of influence
- Better distribution and greater surface area of oil in an emulsion may stimulate quicker degradation
- Use of direct-push injection to increase injection grid density or to lower cost
- Advection/diffusion of dissolved substrate (mostly highly soluble metabolic acids from degradation of the oil)

Partitioning/Surfactant Effects

- Partitioning of contaminant mass into vegetable oil temporarily contains the contaminants until the oil begins to degrade
- Mass partitions back into an active reaction zone as oil degrades or as dissolved concentrations decrease
- Surfactant properties increase the amount of sorbed or residual mass that is bioavailable for degradation

Effects on Hydraulic Conductivity

- Residual oil concentrations lower hydraulic conductivity
- Degradation of vegetable oil over time may decrease residual saturation, but increase biomass
- Use of dilute oil-in-water micro-emulsions may maintain hydraulic conductivity, but are more mobile and may have less longevity
- Reducing hydraulic conductivity may be beneficial as a source containment measure, but is not desirable for permeable biobarriers

Substrate Dissolution/Degradation

- Complex substrates such as molasses and vegetable oil are first degraded producing metabolic acids (propionic, butyric, acetic), which in turn are fermented to produce hydrogen
- Molecular hydrogen is the most effective electron donor for reductive dechlorination
- Metabolic acids produced by oil degradation are highly soluble and they disperse by advection and diffusion. Thus, they behave in a manner similar to other common substrate types

VegOil Injection at Travis AFB

VegOil Application at SS015

STRATEGY: Source reduction in a low permeability, high sulfate aquifer

- Initial contaminant concentrations as high as 4 mg/L TCE, 13 mg/L cis-1,2-DCE, and 17 mg/L VC
- Initial sulfate concentrations as high as 5,400 mg/L
- 62 gallons of VegOil injected in June 2000 (pilot-scale)
- 150 gallons of VegOil injected as an emulsion in December 2000 (expanded-scale)
- Additional 250 gallons of VegOil as an emulsion in April 2002 (full-scale)
- At some locations the emulsion was injected at sufficient pressure to fracture the formation and improve substrate distribution

Geochemistry at Well PES-MW4

Changes in Contaminant Concentrations at Well PES-MW4

Changes in Molar Fraction at Well PES-MW4

Travis VegOil Summary

- Reductive dechlorination was observed at all locations, even with sulfate at 1,500 to 3,000 mg/L
- Complete reduction of PCE and TCE to ethene and ethane is being observed with an average of 96% reduction in TCE
- Some temporal accumulation of VC was observed, but overall VC has decreased from a maximum of 17 mg/L pre-injection to a maximum of 0.5 mg/l in October 2002
- Methane remains relatively low (< 2 mg/L), indicating good utilization of substrate for dechlorination

VegOil Application at Cape Canaveral Hanger K Site, FL

STRATEGY: Source reduction in presence of DNAPL in a high permeability aquifer

- Initial TCE concentrations as high as 100 mg/L, indicating presence of DNAPL
- 1,815 gallons of VegOil injected straight in August 2000 followed by 6,600 gallons of native groundwater as a water push to improve the effective radius of influence
- Treatment area of 5,000 square feet and aquifer volume of 150,000 gallons
- The coarse grained nature of aquifer allowed the VegOil and water push to be injected at relatively low pressure and high flow rate

TCE over Time at Cape Canaveral Hangar K Site

Changes in Concentration at Well HGRK-MP04

Changes in Molar Fraction at Well HGRK-MP04

Cape Canaveral Hanger K Results

- Up to four orders of magnitude reduction of TCE, with initial TCE concentrations as high as 100 mg/L
- PCE and TCE reduced to less than MCLs at 8 of 12 locations monitored in October 2002
- VC initially accumulated due to kinetic disparity, but has been steadily decreasing since April 2002 (VC is below MCL at 3 locations)
- Conversion to ethene and ethane is being observed at all monitoring wells

VegOil Implementation Costs

	Travis	Cape Canaveral
VegOil Imp	olementation Cos	sts – Phase II
Work Plan Preparation	\$12,000	\$11,000
Installation / Injection	\$31,100	\$38,300
Substrate (VegOil)	\$1,100 (3,200 lb)	\$5,700 (13,200 lb)
Reporting	\$12,000	\$12,000
Total	\$56,200	\$67,000
Annual Perforn	nance Monitoring	Costs (2 Events)
Sampling and Analysis	\$32,000	\$32,000
Reporting and Administration	\$12,000	\$12,000
Total	\$44,000	\$44,000

Conclusions

- Despite differences in lithology and geochemistry, the VegOil option has successfully reduced chlorinated ethene mass by reductive dechlorination to the end products of ethene and ethane at both sites
- Accelerated chlorinated ethene mass depletion was observed sooner, and has proceeded at a faster rate, at the Cape Canaveral Site
- Implementation and performance monitoring costs are nearly identical for both sites
- Process monitoring is a significant cost relative to substrate emplacement